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ABSTRACT

This paper describes a set of algorithms used to tackle the
plant prognostic problem provided in the IEEE 2015 PHM
Data Challenge. The task is to detect failure events by ana-
lyzing a dataset including sensor measurements and control
reference signals of multiple plants without prior knowledge.
There are two main difficulties lies in the data challenge. One
is to identify which of the faults will occur. And the other is
when the fault is going to happen. In this study, the authors
tried to transform the task issue into a classification problem
by three key steps including: 1) data cleansing and event time
alignment; 2) feature extraction; 3) application of the ensem-
ble decision tree classifiers. Results show that the proposed
data-driven methods can effectively detect several types of
the failure events, which may be promising in the real world
plant prognostic applications.

1. INTRODUCTION

In recent years, fault detection (Isermann, 1984; Isermann &
Ballé, 1997; Samy, Postlethwaite, & Gu, 2011; Isermann &
Isermann, 2011; Gao, Cecati, & Ding, 2015) has attracted in-
creasing attention in both academic and industrial fields. The
complexity of plants and large amount of integral subsystems
necessitates automated prognostic system, which is used to
replace the human supervision. Researchers and engineers
now confront challenges which require advanced technolo-
gies rather than the traditional model-based methods.

The approaches to fault detection can be generally clas-
sified into two categories: model-based methods and
data-driven methods. The traditional model-based meth-
ods (Venkatasubramanian, Rengaswamy, Yin, & Kavuri,
2003; Isermann, 2005; Frank, 1990) are based on the physical
models of the systems and the related experience and exper-
tise. However, the complexity of modern industrial systems
sets obstacles for devising a practical model. Furthermore,
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in some cases we simply have no idea about the structure of
the system. What we have is the mere data recorded from
the sensors, which motivates us to use data-driven meth-
ods (Yin, Wang, & Karimi, 2014; Schwabacher, 2005; Qin,
2009). Data-driven methods tend to introduce technologies
of machine learning and data science to prognostics.

This paper presents the methods developed by the team Max-
tropy for the IEEE 2015 PHM Data Challenge. The prognos-
tics topic focuses on the operation of a plant and the capability
to detect plant failure events. The dataset is composed of the
following three parts:

(a) time series of sensor measurements and control refer-
ence signals for each of a number of control components
of the plant (e.g. 6 components);

(b) time series data representing additional measurements
of a fixed number of plant zones over the same period
of time (e.g. 3 zones), where a zone may cover one or
more plant components;

(c) plant fault events, each characterized by a start time, an
end time, and a failure code.

Only faults of type 1-5 are of interest, while code 6 repre-
sents all other faults not in focus. The frequency of mea-
surements is approximately one sample every 15 minutes, and
the time series data spans a period of approximately three to
four years. The goal is to predict the beginning time and end
time of failure events of types 1-5. More detailed informa-
tion could be found on the website of PHM Society (PHM
Society, 2015). The dataset can be downloaded from NASA
Ames Prognostics Data Repository (J. Rosca, 2015).

In this paper, data-driven methods are adopted under the cir-
cumstance that we have no prior knowledge about the struc-
ture or physical characters of the plants. More specifically, we
extract several unordered features from the raw data. Pieces
of time series are then sliced. Finally, we train classifiers and
predict to which kind of fault each piece belongs. We use en-
semble decision tree methods, including RF (Random Forest)
and GBDT (Gradient Boosting Decision Tree), as the classi-
fiers.
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The rest of the paper is organized as follows. In Section 2, we
formally define the problem to be solved. The detailed solu-
tion of our team is proposed in Section 3. Empirical results
are presented in Section 4. Finally, we conclude the paper in
Section 5.

2. PROBLEM FORMULATION

In this section, we formally describe the problem in PHM
2015 data challenge.

2.1. Notations

We use bold letters for vectors, and normal fonts for scalars,
sets. Bold capital letters are used for matrices. All the vec-
tors in this paper are column vectors. And ST denotes the
transpose of matrix S. 1(condition) denotes the indicator
function, whose value is 1 when the condition is satisfied and
0 otherwise. Each observation is represented as a pair of fea-
tures and a time stamp: (x, t), where x = [x1, . . . , xk]

T is a
k-dimensional feature vector and t represents the time when
such sample is observed. A fault event is composed of a pair
of time stamps and a fault label: (tstart, tend, y), where tstart

is the beginning time of the fault, tend is the end time of the
fault, and y ∈ {1, 2, 3, 4, 5} is the corresponding fault label.
The sequence of observations in dataset X corresponding to
a fault event (tstart, tend, y) is s =

{
(x, t)

∣∣(x, t) ∈ X, t ≥
tstart, t ≤ tend

}
.

2.2. Problem Definition

Two groups of data are provided in PHM 2015 Data Chal-
lenge: component sensor measurements along with control
reference and zone sensor measurements. Although both
groups of data are supposed to be useful, we only adopt the
component sensor measurements along with control refer-
ence to simplify our model. Hence, the raw data have totally 9
features: 1 integer indicates the component number, 4 sensor
measurements and 4 control reference. We represent the data
of the a specific plant as Xraw =

{
(xi, ti)

∣∣i ∈ {1, . . . , N}},
where N is the number of observations of the plant. The
set of corresponding fault events can then be represented
as E =

{
(tstarti , tendi , yi)

∣∣i ∈ {1, . . . ,M}}, where M is
the number of fault events of the plant. ET− =

{
e =

(tstart, tend, y)
∣∣e ∈ E, tend ≤ T

}
denotes all the events be-

fore T . ET+ =
{
e = (tstart, tend, y)

∣∣e ∈ E, tend ≥ T
}

denotes all the events after T . To simplify the problem, we
assume that ET− ∩ ET+ = ∅.

For a specific plant, we have the data Xraw and complete
ET− along with a specific T . ET+ is incomplete. The task
is to find all the missing elements in ET+.

3. METHODOLOGY

In this section, we propose the solution to the problem defined
in Section 2.2.

3.1. Feature Extraction

The first step is to extract useful features from the raw data to
facilitate the detection. Note that the fault events can overlap.
Hence, we draw an assumption that the indicator of a fault
event may involve a subset of all the components. Further-
more, such indicator may be independent on the order of the
components.

The simplest way of feature extraction is to connect the raw
data vector in a specific order. In particular, raw data vec-
tors are aligned by the time stamps. Observations with nearly
the same time stamps are collected into a group and com-
bined into a longer vector, which is the feature vector. The
combination is according to a specific order of component
number. The component numbers are then useless and can
be removed from the feature vector. In addition, some other
features can also be combined into the feature vector intro-
duced above. The time series of fault events follow a period-
ical pattern. Month, day, weekday and hour can be extracted
from time stamps. Then features are extracted by getting the
maximum, minimum, average and standard deviation of each
column of S from observations in the same month. Similarly
for the same day, weekday and hour. Another similar aspect
is that plant fault events are independent of one another but a
fault is possible to be dependent of data i inside a three hour
time window before the fault start time. Then features are
extracted by getting the maximum, minimum, average and
standard deviation of each column of S from observations in
the one hour. Similarly for two hours and three hours time
window. (Faloutsos, Ranganathan, & Manolopoulos, 1994;
Huang et al., 1998)

According to our assumption, the model should be indepen-
dent on the order of the components. To fulfil this goal, we
can simply consider all the permutations of the observations
in the same group. All such permutations are then combined
into feature vectors. Such way of feature extraction does
make sense. Nevertheless, when the number of components
of a plant is large, the number of data after feature extraction
grows dramatically. For example, if there are 10 components
in some plant, 10! = 3, 628, 800 permutations should be con-
sidered, which makes the problem intractable.

Another way rather than permutes the components is to draw
histograms from each dimension of the group of raw data
which are aligned by the time stamps and then connect the
histograms into a longer vector. Note that this solution can
also remove the order of components from the features. How-
ever, the bins of the histograms should be carefully selected
via inspecting each dimension of the observations. Small
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number of bins may eliminate the discrepancy between fail-
ures and normal status. Too many bins may result in overfit
or bad generalization.

In our solution, a list of all unique values is drawn out of each
dimension of raw data. One out of every 8 elements in the list
is selected as a bin. A region of higher density of elements
also possess more bins.

Now we formally define the feature vector. For a specific se-
quence of k observations S =

{
(xi, ti)

∣∣i ∈ {1, . . . , k}}, we
construct a corresponding k × 8 matrix S = [x1, . . . ,xk]

T ,
each row of which is an observation. Note that we assume
that the component numbers are already removed from the
observations. For a certain dimension j ∈ {1, . . . , 8},
we have the set of bins Bj =

{
bj,1, . . . , bj,pj+1

}
.

The corresponding histogram of the jth dimension is
a pj × 1 vector fj = [fj,1, . . . , fj,pj

], where fj,i =
f ′j,i/

∑
i∈{1,...,pj} f

′
j,i and f ′j,i =

∑
l∈{1,...,k} 1(bj,i ≤

Sl,j < bj,i+1) for ∀i ∈ {1, . . . , pj}. The final feature
vector of S is simply the combination of all fj , which is
[f1,1, . . . , f1,p1

, . . . , f8,1, . . . , f8,p8
]T .

3.2. Ensemble Decision Tree Classifier

Ensemble methods are powerful tools for classification. In
our solution, we adopt decision tree classifier to predict the
type of fault. More specifically, we use RF (Random Forest)
and GBDT (Gradient Boosting Decision Tree) as the classi-
fiers.

RF (Random Forest) build an ensemble of classifiers and
it takes advantage of two powerful machine-learning tech-
niques: bagging and random feature selection (Liaw &
Wiener, 2002; Breiman, 2001). Bagging constructs new
training sets by resampling from the original data set by ran-
domly select k samples. Note that the sample selected will
not be removed from the data set in the next draw. Bootstrap
sampling technique makes some of the training samples be
chosen more than once while some others will not be chosen
at all in a new training set. For each training set, instead of
using all features, RF randomly selects a random subset of
the input features to split at each splitting node when grow-
ing a tree. Since only a subset of the features is utilized at
each node, computational load of RF is comparatively light.
To assess the prediction performance, an out-of-bag (OOB)
method can be used. For each training set, one-third of the
samples are randomly left out and two-thirds of the samples
are used for building a tree. For accuracy estimation, votes
for each sample in OOB samples can be used to estimate the
performance of prediction. In the end, a simple majority vote
is taken for prediction. (Svetnik et al., 2003)

GBDT (Gradient Boosting Decision Tree) is a data mining
technique that has achieved considerable success in data min-
ing (Dietterich, 2000; J. Friedman, Hastie, Tibshirani, et al.,

2000; J. H. Friedman, 2001, 2002). There are examples
of gradient boosting applications in other fields including
refinement of classification tree analysis in a remote sens-
ing problem (Lawrence, Bunn, Powell, & Zambon, 2004),
discrimination of freshwater residency in a coastal fishery
from scales collected from subadult fish (McCulloch, Cappo,
Aumend, & Müller, 2005), microscopy image analysis of
bread (Lindgren & Rousu, 2002), graphical estimation of
a slate deposit (Diener et al., 2004), and calibrating spec-
troscope measurements of organic chemicals in plant sam-
ples (Shepherd, Palm, Gachengo, & Vanlauwe, 2003).

Boosting creates a series of decision trees which together
form a single predictive model. Trees are built sequentially
from pseudo-residuals, which is the gradient of the loss func-
tion of the previous tree. At each iteration, a tree is built from
a random sampling of the original data set, producing an in-
cremental improvement in the model. This process is simi-
lar to a bootstrap technique in that many trees are generated.
With each successive tree, it is hoped that gradient boosting
will reduce the error. Using only a fraction of the training
data increases both the computation speed and the prediction
accuracy, while also helping to avoid over-fitting the data. An
advantage of stochastic gradient boosting is that it is not nec-
essary to select predictor variables ahead of time or transform
predictor variables. It is also resistant to outliers, as the steep-
est gradient algorithm stresses points that are close to the cor-
rect classification (Moisen et al., 2006; B. Roe et al., 2005).

Algorithm 1 Training of a plant

Input: Xraw, ET−, set of bins B = {B1, . . . , B8}
Output: A function label := predictor(sample)

1: S = ∅
2: for all e ∈ ET− do
3: Extract the feature vector f from e by using b
4: Add f into S
5: end for
6: for all e /∈ ET− and before the last event in ET− do
7: Extract the feature vector f from e by using B
8: Add f into S
9: end for

10: predictor = train trees(S)

3.3. Algorithm

Now we can formally describe our algorithms. The solution
is mainly separated into two parts: training and prediction.
For training, features are extracted from all the fault events
in Xraw indicated by ET− as well as an adequate number
of normal (without any fault) events. All these samples are
used to train the classifier. The detailed algorithm is shown
in Algorithm 1. Note that train trees can be either RF or
GDBT. For prediction, moving windows of different lengths
are used to draw events from Xraw after the last event in
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ET−. All such events are labelled by the classifier trained
before. Overlapping fault events with same label will then
be combined into a single event. Finally we recover the set
ET+. Detailed algorithm is shown in Algorithm 2.

Algorithm 2 Prediction of a plant

Input: Xraw, ET−, set of bins B = {B1, . . . , B8},
predictor, a set of lengths of events l

Output: ET+

1: S = ∅
2: An empty label 0 is initially assigned to each event e
3: for all e = (tstart, tend, 0) after the last event in ET− of

length in l do
4: Extract the feature vector f from e by using b
5: label = predictor(f)
6: enew = (tstart, tend, label)
7: Add enew into S
8: end for
9: repeat

10: for all g ∈ S do
11: for all h ∈ S and h 6= g do
12: if g and h overlap and have same label then
13: Combine g and h into a single event egh
14: Delete g and h from S
15: Add egh into S
16: end if
17: end for
18: end for
19: until No overlapping events with same label are found
20: ET+ := S

Note that each plant is processed separately according to the
way we normalize the histograms, though samples from dif-
ferent plants have the same number of features. Some other
kinds of features may prevent us from differentiating samples
from various plants, but we will not discuss such details in
this paper.

4. EXPERIMENT

In this section, we present the empirical results of our meth-
ods. We compare the performance of RF and GDBT. Further-
more, we report the predicting result of each plant according
to the scoring criterion.

4.1. Dataset

The dataset we use is presented in Table 1. Totally 32 plant
is used. Plant 2 is not included for the missing of many fault
events after a certain time point. Fault events of the remaining
plants are complete. We separate the data of each plant into
two parts: training data and testing data. In Table 1, # sam-
ples 1 and # faults 1 denotes the numbers of observations and
faults before a specific time point, which are used for train-
ing. And # samples 2 and # faults 2 denotes the numbers of
observations and faults after such time point, which are used
for testing.

4.2. Classification

In this section, we evaluate the classifiers. We simply ex-
tract all the fault events and randomly pick up 2000 normal
events out of each plant for testing. The number of ensem-
ble trees is 256 for each classifier. The ensemble method we
use for GDBT is called RUSBoost in MATLAB. Accuracy,
recall and true negative of both algorithms are shown in Fig-
ure 1, 2 and 3. Accuracy is the percentage of events which
are correctly labelled. Recall is the percentage of fault events
which are correctly labelled. True negative is the percent-
age of normal events which are correctly labelled. RF shows
competitive performance in recall. And RF avoids more false
positive. Generally, RF overshadows GDBT. Note that for
RF, the number of normal events for training must be care-
fully tuned, while such number affects the performance of
RUSBoost slightly.

Table 1. Dataset

Plant # # samples 1 # faults 1 # samples 2 # faults 2
1 1728 1155 1546 1157
3 1339 441 3148 442
4 1724 914 1811 916
5 574 389 1269 391
6 1619 1152 2750 1153
7 3355 2124 3297 2126
8 1614 1064 1660 1065
9 917 734 1262 735

10 748 486 748 487
11 221 23 78 25
12 862 466 522 468
13 2047 1824 2245 1825
14 1425 936 1671 937
15 2395 1472 2306 1473
17 498 238 2311 239
18 1647 1399 1951 1401
21 1462 182 788 183
23 1488 652 2393 653
24 380 319 1165 320
25 1820 1275 1525 1277
27 1401 949 2385 950
28 382 207 535 208
29 1180 559 856 561
30 1977 1136 1248 1138
31 375 141 187 142
32 1815 1565 1833 1566
33 548 415 535 416
34 951 697 1578 698
35 1483 1268 1466 1269
36 925 619 754 620
39 1561 689 1301 690
40 1679 1592 1841 1594

4.3. Scoring

The scoring criterion is as follows:

Score = TP × 10−MC × 0.01− FP × 0.1− FN × 0.1,

where TP is the number of faults identified correctly with
the start and end time estimated within ±1 hour, MC is the
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Figure 1. Classification result: accuracy

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

1
3

4
5

6
7

8
9

10
11

12
13

14
15

17
18

21
23

24
25

27
28

29
30

31
32

33
34

35
36

39
40

0 10 20 30 40 50 60 70

plant num
ber

recall (%)

 

 

GDBT
RF

Figure 2. Classification result: recall
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Figure 3. Classification result: true negative
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number of faults identified with correct start and end times
but with the wrong fault code, FP is the number of faults
identified that did not actually occur in the data, FN is the
number of faults in the real data that were not identified.

Table 2. Scoring GDBT

Plant # TP MC FP FN Score
1 307 1302 14163 616 1579.08
3 206 571 30028 222 -970.71
4 17 578 10226 739 -932.28
5 158 527 36575 146 -2097.37
6 277 1118 3842 545 2320.12
7 272 3151 41052 1016 -1518.31
8 34 257 1315 936 112.33
9 439 1377 17014 201 2654.73

10 137 739 13654 289 -31.69
11 3 14 1569 18 -128.84
12 93 517 4368 256 462.43
13 73 1947 7398 1169 -146.17
14 31 481 2594 740 -28.21
15 325 855 12262 1016 1913.65
17 42 241 12036 145 -800.51
18 42 417 3109 1210 -16.07
21 26 270 8762 87 -627.6
23 201 617 13805 318 591.53
24 93 494 38880 169 -2979.84
25 52 1078 7417 851 -317.58
27 82 501 1853 675 562.19
28 11 224 7467 134 -652.34
29 127 586 6174 337 613.04
30 212 1574 5987 568 1448.76
31 43 252 1717 60 249.78
32 104 1474 6471 941 284.06
33 111 519 8842 236 197.01
34 21 140 1421 648 1.7
35 84 591 2937 992 441.19
36 204 1267 40601 133 -2046.07
39 3 295 5703 586 -601.85
40 70 502 3365 1376 220.88

The result of GDBT is shown in Table 2. And the result of
RF is shown in Table 2. It can be seen that RF outperforms
GDBT in most cases. Although changing some parameters of
GDBT may help to improve the performance, RF works well
without much effort of tuning.

The major problem of our solution is that it is still difficult to
tell apart the overlapping fault events. And in many cases, a
long-time fault event may be detected as many short events,
which results in many false positives. A more effective link-
ing strategy is needed. Furthermore, the bins used for feature
extraction may not be the optimal one. Further tuning may be
necessary.

5. CONCLUSION

In this paper, we have proposed a solution to the problem of
the IEEE 2015 PHM Data Challenge. A useful feature extrac-
tion technology as well as ensemble decision tree classifiers
have been utilized. The empirical results have also been pre-

Table 3. Scoring RF

Plant # TP MC FP FN Score
1 494 2406 10307 272 3858.04
3 101 189 4864 320 489.71
4 548 1233 11636 276 4276.47
5 102 200 9056 251 87.3
6 431 1051 4485 502 3800.79
7 678 2405 14246 1046 5226.75
8 294 1465 11929 487 1683.75
9 411 920 6208 258 3454.2

10 126 396 3450 350 876.04
11 0 0 0 25 -2.5
12 106 539 4383 247 591.61
13 442 1925 6940 925 3614.25
14 269 979 6270 540 1999.21
15 503 1932 14847 518 3474.18
17 19 56 963 210 72.14
18 511 2035 8752 490 4165.45
21 45 69 911 129 345.31
23 303 892 10373 258 1957.98
24 46 120 2444 261 188.3
25 430 1357 11505 615 3074.43
27 177 657 1980 639 1501.53
28 39 126 1685 156 204.64
29 186 666 6721 284 1152.84
30 344 1327 5856 597 2781.43
31 4 11 49 136 21.39
32 407 1887 14884 781 2484.63
33 33 51 726 371 219.79
34 255 648 7342 330 1776.32
35 336 1666 11715 657 2106.14
36 343 723 5284 226 2871.77
39 89 532 8290 513 4.38
40 634 1535 13093 794 4935.95

sented. More efforts will be taken in diminishing the false
positives in our future work.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers and ed-
itors for their helpful comments, as well as the organizers of
the PHM data challenge competition for their efforts to give
the opportunity for us to present the potential solutions to in-
dustrial applications.

REFERENCES

Breiman, L. (2001). Random forests. Machine learning,
45(1), 5–32.

B. Roe, H.-J. Y., et al. (2005). Boosted decision trees as an al-
ternative to artificial neural networks for particle identi-
fication. Nuclear Instruments and Methods in Physics,
577-584.

Diener, H.-C., Bogousslavsky, J., Brass, L. M., Cimminiello,
C., Csiba, L., Kaste, M., . . . others (2004). Aspirin
and clopidogrel compared with clopidogrel alone after
recent ischaemic stroke or transient ischaemic attack in
high-risk patients (match): randomised, double-blind,
placebo-controlled trial. The Lancet, 364(9431), 331–

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

337.
Dietterich, T. G. (2000). Ensemble methods in machine

learning. In Multiple classifier systems (pp. 1–15).
Springer.

Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994).
Fast subsequence matching in time-series databases
(Vol. 23) (No. 2). ACM.

Frank, P. M. (1990). Fault diagnosis in dynamic systems
using analytical and knowledge-based redundancy: A
survey and some new results. Automatica, 26(3), 459–
474.

Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive
logistic regression: a statistical view of boosting (with
discussion and a rejoinder by the authors). The annals
of statistics, 28(2), 337–407.

Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Annals of statistics, 1189–
1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Com-
put. Stat. Data Anal, 367–378.

Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey
of fault diagnosis and fault-tolerant techniques-part i:
Fault diagnosis with model-based and signal-based ap-
proaches. IEEE Transactions on Industrial Electronics,
62(6), 3757–3767.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H.,
Zheng, Q., . . . Liu, H. H. (1998). The empirical mode
decomposition and the hilbert spectrum for nonlinear
and non-stationary time series analysis. In Proceedings
of the royal society of london a: Mathematical, physi-
cal and engineering sciences (Vol. 454, pp. 903–995).

Isermann, R. (1984). Process fault detection based on model-
ing and estimation methods survey. Automatica, 20(4),
387–404.

Isermann, R. (2005). Model-based fault-detection and
diagnosis–status and applications. Annual Reviews in
control, 29(1), 71–85.
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